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Abstract—This study presents a new method for calculating the intrinsic stress that develops in a
film as it is deposited onto a substrate. Previous investigations have employed a simplified, geo-
metrically linear beam or plate theory that assumes very thin films and, in most cases, a uniform
film stress in order to calculate the film stress from measured deflections of the substrate. The model
presented here makes no assumptions regarding the thickness of the film or the uniformity of the
film stress and also accounts for nonlinear geometric effects which may become singificant whenever
the measured deflections reach an order of magnitude equal to or greater than that of the substrate
thickness. Results are presented based upon material properties and geometrical parameters that
are typical for the bending-plate experiment. Comparisons are also made based upon actual exper-
imental data that have appeared in the literature. These results clearly indicate the significance of
nonlinear geometric effects in the bending-plate experiment. The model developed here may be used
either to directly account for these effects or to design an experiment in such a way that these effects
will be negligible.

INTRODUCTION

Intense stresses are known to develop in thin films as they are deposited onto a substrate
material. Since these stresses are often comparable to the thin film materials bulk yield
stress, it is anticipated that they could have significant effects upon the material’s mechanical,
electrical, magnetic and optical properties. For this reason, thin film stresses have been
studied extensively for many years and a large body of literature has subsequently developed.
It is beyond the scope of the present paper to present a detailed review of this literature.
Interested readers are referred to three excellent review articles by Hoffman (1966), Chopra
(1969) and Kinosita (1972).

Several mechanisms accounting for the development of thin film stresses have been
proposed in the literature and are reviewed by Chopra (1969). From a macro-mechanics
point of view the detailed mechanism is unimportant, and it is sufficient to assume that
during its deposition, the film undergoes some type of microstructural change which induces
a non-mechanical or “intrinsic” strain. Stresses develop since this intrinsic strain acts against
a geometrical constraint imposed by the adjacent substrate material. Since this intrinsic
strain is a non-mechanical strain (i.e. a strain that does not produce stress in the absence
of geometrical constraints), it may be considered analogous in its effects to a thermal strain.

Of the various experimental methods that have been employed to indirectly estimate
the stresses in thin films, it is the so-called bending-plate or bending-beam method which
has received the widest application. In this experiment, a thin film (up to around 2000 A)
is deposited onto a relatively thin (0.1 mm) usually rectangular substrate. The intrinsic
strain that develops in the film produces an effective eccentric loading on the substrate
which, if the substrate is thin enough, will result in measurable out-of-plane displacements.
These displacements are used to calculate the specimen’s curvature and a simple theory is
applied to determine the film stress. Needless to say, the stress calculated in this manner
cannot be more accurate than the assumptions that are employed in the development of
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this “simple™ theory. The purpose of the present paper is to investigate the appropriateness
of a few of these assumptions emphasizing, in particular, the key assumption of linear
strain;/displacement relations (i.e. the assumption that the displacements are small with
respect to substrate thickness). This assumption is considered to be critical from a practical
point of view since it represents a fundamental dilemma for the experimentalist. On the one
hand, he would like to use as thin a substrate as possible so that the out-of-plane deflections
may be easily and precisely measured, while on the other hand he must always guarantee
that the deflections measured are at least an order of magnitude less than the substrate
thickness if a linear theory is to be employed to calculate the film stress. Thus. any decrease
in thickness of the substrate employed results in a decrease in the acceptable range of
deflections that may be measured.

Unfortunately, most of the published experimental results fail to report the dimensions
of the substrate that was employed so that it is rather difficult to make a general assessment
of the relative magnitude of the measured deflections with respect to substrate thickness.
Chopra (1969), however, does state that “the measured displacements often are not much
smaller than the substrate thickness™. If this does indeed turn out to be the rule rather than
the exception, then the use of a linear theory to predict film stresses must be considered
questionable, and many of the published results may be midleading. Chopra (1969)
addressed this question by making an analogy with a known large deflection solution for
an isotropic plate loaded by pure bending moments applied only to two opposite edges.
From this he concluded that significant discrepancies between the linear and nonlinear
results would not occur even when the deflections are of the same order of magnitude as
the thickness. This argument, however, is not convincing since the intrinsic film strain
produces an effective eccentric loading on the substrate which is statically equivalent to an
in-plane force as well as a bending moment. The presence of an in-plane force is significant
since an appreciable amount of the nonlinearity in these problems may be attributed to the
coupling between in-plane forces and out-of-plane deflections in the plate equilibrium
equations. One of the objectives of the present paper is to address this problem by developing
a nonlinear model that is directly applicable to the bending-plate experiment that is used
to measure film stresses.

PROBLEM FORMULATION

Most applications of the bending-plate experiment involve the deposition of a thin film
onto a rectangular, usually beam-like substrate. According to Chopra (1969), this beam-
like substrate is either rigidly clamped at one end (cantilevered beam) or is supported on
knife edges at both ends (simply supported beam). The most commonly employed models
of the bending-plate experiment (see, for example, Stoney, 1909 and Brenner and Senderoff,
1949) were derived by assuming that the film/substrate laminate is free of external
constraints. This situation corresponds directly to a beam with simple supports. Since these
models are geometrically linear, they may also be considered applicable to the cantilevered
beam provided, of course, that the curvature is calculated from relative displacements that
are measured at locations far removed (in comparison to the beam width) from the clamped
end.

Whenever nonlinear geometric effects are present, the specific support conditions may
have a significant effect upon the resulting shape of the film/substrate laminate. For example,
the nonlinear results developed later in this paper contain a critical or bifurcation point
beyond which multiple solutions (shapes) are predicted. It is possible that one of these
shapes may be inhibited by a clamped boundary. It is also conceivable that an entirely
different shape might result due to a clamped boundary than would occur with simple
supports. In the present work, the film/substrate laminate is assumed to be free of external
constraints so that all nonlinear results should be considered strictly applicable only to
cases involving a simply supported substrate.

Consider now a rectangular plate (Fig. 1) of length 2a, width 25, and thickness 4 that
has been fabricated by depositing a film layer of thickness A; onto a substrate layer of
thickness A, and assume that the film and substrate are perfectly bonded, i.e. assume that
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Fig. 1. Schematic of a rectangular film/substrate laminate.

the displacement field is continuous across the interface. Also assume that both the film
and substrate are linear elastic and isotropic and that the in-plane dimensions of the plate
are very large with respect to its thickness. Previous investigators have also assumed that
the film is “very thin” in comparison with the substrate and, in some instances, that the
film stress is distributed uniformly across the film thickness. The present development will
not include any assumptions with regard to either the film thickness or the uniformity of
the film stress.

In our opinion, the easiest and most direct approach to this problem is to consider the
film and substrate layers to act as a single unit or “laminate” and then to employ the
assumptions of classical lamination theory (see Jones, 1975) to write the stresses in the film
and substrate layers in terms of the strains and curvatures of the middle-plane of the
laminate. In this context, the intrinsic strain that develops in the film as part of the film
deposition process is treated as a non-mechanical strain analogous to the thermal strains
which typically appear in classical lamination theory. Thus,

E
Ox = — (8,\' + vssy)

* 1=y
g, = ’l__—svz (84,. + vsax)
Ef Efei
Oy = I-:sz(ad-vfsy)— i—v
E; Eié
I =137 (8.\'+vt‘ex)—‘1—_:;; (1

where ¢ denotes stress, ¢ is strain, E is modulus, v is Poisson’s ratio and ¢ is the intrinsic
film strain. Subscripts s and f refer to the substrate and film respectively, while x and y refer
to the coordinate system of Fig. 1. The strains ¢, and ¢, are the laminate strains which,
according to classical lamination theory, are related to the strains and curvatures of the
laminate middle plane by

& = g;+zk,

& =& +zk, #)]

where &° and k denote the middle-plane strain and curvature, respectively.
Note from eqn (1) that for the limiting case of a rigid substrate (or of a *“‘very thin”
film), that the film stress approaches its fully constrained (or intrinsic) value

o = "‘Erei/(l""f)- 3)

If the substrate is not rigid, then the laminate middle-plane will stretch and bend and thus

reduce the magnitude of the film stress below its intrinsic value. To determine the film stress

for this case requires that we first determine the middle-plane strains and curvatures. The

approach used for determining these quantities depends upon the assumed strain/

displacement relations (linear or nonlinear) as discussed in the following two sections.
For the linear solution we employ the usual linear strain/displacement relations
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where u” and ¢° are the middle-plane displacements in the x and y directions. respectively.
The nonlinear results are obtained by assuming von Karman's (see, for example, Fung,
1965) strain/displacement relations

T8y éx éx J\ éy (3)

where w° is the displacement of the mid-plane in the - direction.
In both cases, the following relations between the middle-plane curvatures and dis-

placements are assumed
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LINEAR SOLUTION

Since the laminate is assumed to be free of external constraints, the solution for the
linear case may be obtained simply by requiring the net resultant forces and moments to

vanish, i.e.
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Substitution of eqns (1) and (2) into (7) and performing the indicated integrations yields a
set of four equations that may be solved for the middle-plane strains and curvatures. The

result is

=g =¢ =[4;+ IRA(As+ A7)/ (A + A3))é (8a)
ke =k =k = — Al (A +43) (3b)

where k* = hk is a nondimensional curvature, R = h/h, and the 4; are nondimensional
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constants that depend upon R and upon the material properties of the film and substrate
as defined in the Appendix.

Assuming that the curvature has been determined experimentally, eqn (8b) may be
employed to determine the intrinsic film strain. If desired, the middle-plane strain could
then be obtained from (8a) and the film stress from (1). Since the film stress will not (in
general) be uniform across the film thickness, it may be more appropriate to calculate either
an average film stress

hi2 E ]
o = 1 f o, dz = _‘vf (& + 3k*—e) 9)

i 2~ b 1

or the fully constrained film stress by eqn (3).

APPROXIMATE NONLINEAR SOLUTION

As a general rule of thumb, the linear results presented above may be considered valid
whenever the maximum out-of-plane displacement is small (say, by at least an order of
magnitude) with respect to the laminate thickness /. In order to extend the validity of our
results to include those cases where the maximum out-of-plane displacement is of the same
order of magnitude as 4, it is necessary to consider the nonlinear strain/displacement
relations of von Karman [eqns (5)].

Due to the complexity of the nonlinear problem, a closed form solution relating the
middle-plane strains and curvatures to the intrinsic film strain should not be expected. For
this reason we decided to obtain an approximate solution by assuming kinematically
admissible expressions for the middle-plane displacements in terms of several generalized
coordinates whose values are determined by requiring a minimal value for the total potential
energy of the laminate. Since the laminated beam is assumed free of external loadings, the
total potential energy will be equal to the total strain energy which may be expressed as

1 [® i 2 b ) . _
U== J J U‘ (0 8,+0,¢,) dz+ j (o, (ex—€)+0,(5,—€)) dZ} dy dx.
2 )ea J-s Ulem2 * * 2~ by :
(10)

The kinematically admissible middle-plane displacements are assumed to be as follows:

W = 4(b,x2 +5,y?) (11a)
W = ¢\ x— thix’—ib,byxy? (11b)
v° =y — b3y’ —ib by yx?. (11c)

These assumed forms were motivated by the work of Hyer (1981b) which analyzed the out-
of-plane deflections of unsymmetric cross-ply composite laminates caused by the thermal
strains which develop as that laminate cools from its elevated cure temperature. The primary
assumption employed in arriving at eqns (11) is that the middle-plane curvatures of the
laminate are spatially uniform. This conclusion was arrived at empirically by Hyer (1981b)
for composite laminates and is also consistent with experimental observations for film/sub-
strate laminates. The first term in eqns (11b) and (1 1¢) represents the usual linear dependence
of the in-plane displacements on the in-plane spatial coordinates that one would expect
from linear theory. The second term in these equations represents the effects of the out-of-
plane warping upon the in-plane displacements, while the last term is included to guarantee
that the middle-plane shear strain vanishes. Since the laminate presently under consideration
(Fig. 1) is a special type of asymmetric composite laminate (i.e. with isotropic rather than
orthotropic layers) and since, from a mechanics point of view, the intrinsic film strain is
analogous to a thermal strain, it would seem appropriate to consider eqns (11) as approxi-
mate expressions for the middle-plane deflections of our film/substrate laminate. The
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importance of the assumed support conditions should be emphasized at this point since
eqns (11) are clearly not kinematically admissible for the case of a clamped boundary.

The approximate nonlinear solution may now be obtained by substituting eqns (11)
into eqns (5) and (6) with this result being substituted into eqns (1) and (2) and finally into
eqn (10). Performing the indicated integrations then yields an explicit expression for the
strain energy in terms of the generalized coordinates. Requiring the first variation of the
strain energy with respect to the generalized coordinates to vanish yields a set of four
nonlinear algebraic equations that may be solved for the generalized coordinates (Fox.
1954). These equations are very complicated and have been omitted here for brevity. It
turns out that two of these equations are linear in ¢, and ¢, and may thus be readily solved
in terms of b, and b, (or k¥ and k*). The result is

cr =T1(b/h) ki) —IRAKY — ARAk* + A
¢y = P5(a/h)k*k* — \RAK* — \RAK* + 45 (12)

where the nondimensional constants A5, 4¢ and 4 - are given in the Appendix. Substitution
of (12) into the remaining two equations yields two nonlinear algebraic equations for k*
and k¥, namely

A (@ih) (L4 (B a)y Wk + Ak + Ask* + A e =0
A1@/h) (1 +(bla) Xk + Aok ¥ + A kE+ A & =0 (13)

where A,—4, are again given in the Appendix. For clarity, all dependence upon the in-plane
dimensions @ and b and the intrinsic strain ¢' have been shown explicitly in eqns (12) and
(13). The constants 4; depend only on the thickness ratio and the material properties.

It is interesting to note that as the in-plane dimensions approach zero, the solutions to
eqn (13) approach the linear solution given in eqn (8b). Also, if this solution is substituted
into (12), then ¢, and ¢, approach the linear solutions for &; and ;. This result is actually
not very surprising since, as the in-plane dimensions become smaller, the ratio of the
maximum out-of-plane deflection to the plate thickness will also decrease eventually reach-
ing a value for which the linear solution is an acceptable approximation.

Inspection of eqns (13) also shows that an identical set of equations is recovered if we
replace k} by k¥ and k;F by k*. Thus, one solution of these equations will always have the
property that k* = k*. Since these equations are nonlinear, other solutions are of course
possible and do indeed occur in some situations. In fact, it can be readily shown that the
following two solutions also satisfy eqns (13)

A_‘ei
* . +
k] 4, +D
At
¥ — 14
k; 34, FD (14)
where
. \/AI(A4e*)2(I+(b/a)A)“4(hs/ﬂ)4A§(Az“Az) as)
) A, 431+ (b/a)*) '

Note, however, that these two solutions are not always real. If the film is thin enough so
that the terms containing R? in the expressions for 4, and A4; (see Appendix) can be
neglected, then it can be shown that the quantity 4, — A, is always positive. Since 4, is also
always positive, the two solutions given in eqn (14) will be either real or complex depending
upon the relative magnitude of the two terms in the numerator of (15). Thus, for those
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situations where D is imaginary there will be only one physically meaningful solution to
eqns (13), i.e. the equal curvature shape where k* = k*. If D is real, however, eqn (13) will
have three solutions. The case where the two terms in the numerator of (15) have equal
magnitudes (D = 0) thus represents a bifurcation point in the nonlinear results. From this
condition, the following expression for the intrinsic strain at this bifurcation point can be

obtained
i _ZAZ(hs/a)2 AZ—AI&
= N A Gl (16)

Combining eqn (16) with (14) (with D = 0) provides a similar criteria for locating the
bifurcation point in terms of the nondimensional curvature

. _A4s—4y
| = (hofa)? | s an

For applications involving the bending-plate experiment, eqn (17) has greater practical
value than does (16) since it is the curvature that is measured directly in this experiment. To
avoid the confusion associated with the prediction of multiple solutions for an experiment, it
is desirable to design the experiment so that the measured curvatures will be always less
than the value given by (17). Satisfying these criteria will not, however, guarantee that
nonlinear geometric effects will be negligible as will be shown later.

Whenever multiple solutions are possible it is necessary to determine which, if any, of
these are stable. This may be accomplished by investigating the second variation of the
strain energy with respect to the generalized coordinates (Fox, 1954). Without going into
details, it has been found that whenever the bifurcation point has not been reached, the
single solution k! = k* is always stable. After the bifurcation point has been exceeded,
however, the two solutions represented by eqns (14) are always stable, whereas the equal
curvature solution k} = k* is always unstable.

RESULTS

Results will now be presented comparing the solutions obtained from the linear and
nonlinear theories developed in the previous two sections for a variety of situations. Unless
stated otherwise, all results are based on the following material properties and geometrical
parameters that are typical for a metallic film on a glass substrate:

E, = 50GPa
E/E =4
ve=v,=0.25
¢ = —0.003
bja=10.25
alh, = 200
he/hs = 0.001. (18)

Itis interesting to note that the assumed intrinsic strain produces a tensile (fully constrained)
film stress of 800 MPa. This stress is very large, but is typical of those reported in the
literature. For example, Klokholm and Berry (1968) calculated intrinsic film stresses for a
number of metals and found these stresses to range between 100 and 1500 MPa.
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Fig. 2. Typical results of the linear and nonlincar models.

All results will show the predicted non-dimensional curvature versus some non-dimen-
sional material or geometrical parameter of interest as depicted schematically in Fig. 2.
Linear solutions will always be shown by a dashed line, while stable nonlinear solutions
will be given by solid lines. Unstable solutions of the nonlinear equations will be represented
by a dashed line with inserted dots. To conserve space, both curvatures A¥ and &} are
plotted on the same axes with a particular point on a curve representing either k¥ or k¥.
For example, the dashed curve giving the linear solution always represents an equal cur-
vature shape with k¥ = k*. The curve AB in Fig. 2 represents a situation where only one
solution of the nonlinear equations is found. This solution is always found to be stable with
k¥ = kY. Point B represents the bifurcation point after which the nonlinear theory will
always provide three solutions. One of these solutions, represented by curve BD, will again
have the property that k} = &*. This curve will always appear as an extension of curve AB
and will always be unstable. The other two solutions are those predicted by eqns (14) and
are given by curves BC and BE. Again. these two solutions are always stable. Letting
subscripts BC and BE refer to the results depicted by curves BC and BE respectively, these
two solutions are

and
k.v* = kg‘E- kl* = JB!‘(‘- (19)

A general feature of these two solutions is that they will produce shapes that rapidly
approach that of a right circular cylinder (|&*| > |k*| or [k¥| » |k}|). This tendency can
be seen directly from eqns (14) and (15). For example, suppose that Fig. 2 represents the
results for the non-dimensional curvature as a function of intrinsic strain (actual results for
this case are given in Fig. 6) with all other parameters held constant. For this case, the first
term in the numerator of eqn (15) will increase with increasing ¢' while the second term
(along with the denominator) will remain constant. For small values of ¢'. D will be
imaginary so that only one real solution exists (i.e. the solution k* = k* given by curve AB
in Fig. 2). As ¢ increases, it will eventually reach the critical value given by eqn (16) which
corresponds to the bifurcation point B in Fig. 2. When ¢' exceeds this critical value, the
two solutions represented by eqn (14) (curves BC and BE in Fig. 2) will become real. As é'
continues to increase, it will eventually become large enough so that the second term in the
numerator of (15) will become negligible in comparison with the first. When this happens,
the solutions of eqns (14) will approach the following

kx* = 0. —A,‘ei/A:
k;fk = —Aue/4,, 0. (20)
It should be mentioned here that two distinct cylindrical shapes have been observed
experimentally for unsymmetrical cross-ply composite laminates by Hyer ( 1981a). These

laminates may be easily “flipped” back and forth between these two stable cylindrical
shapes by applying a small amount of pressure to the center of the laminate.
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Fig. 5. Non-dimensional curvature as a function of film to substrate thickness ratio.
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Figures 3-7 show specific results for the non-dimensional curvature k* as a function
of the non-dimensional parameters a/h;, b/a, hi/ h;, ¢ and E;/ E,. In some of these cases (in
particular, Figs 5-7) there is an apparent tendency for the linear solution to approach the
larger of the two nonlinear solutions beyond the bifurcation point. Comparing eqns (8b)
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Fig. 6. The effect of the intrinsic film strain upon the non-dimensional curvarure.
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Fig. 7. Non-dimensional curvature as a function of the film/substrate modulus ratio.

and (20) it is seen that the ratio of the linear solution (k) to the larger nonlinear solution
(k) beyond the bifurcation point approaches the value

ki* [k = A3/ (A2 + 43). @n

Due to the complexity of the non-dimensional parameters 4, and A;, it is difficult to say
much in general about eqn (21) except to note that for the special case where the film is
thin enough so that terms containing R may be neglected and if v, = v, = v (as considered
here), then (21) reduces to

k* kX = 1/(1+v). (22)

Thus, if v = 0.25 then the linear solution will approach a value that is 80% of the larger
nonlinear solution beyond the bifurcation point.

Figures 3 and 4 show the pronounced effect of the in-plane dimensions of a specimen
upon the curvature. These results are important from a practical point of view since all
results for intrinsic stresses in thin films reported in the literature are calculated based on
a linear theory which is independent of the in-plane dimensions of the specimen. Figure 3
is based upon the parameters given in eqn (18) except that the ratio a/h, varies between 0
and 800. The bifurcation point for the case considered in Fig. 3 occurs when a/ A, reaches
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approximately 280; however, this value may decrease significantly if E¢/E,, hi/h,, or the
magnitude of the intrinsic strain ¢' are increased from the values given in (18). The difference
between the predictions based upon the linear and nonlinear theories at the bifurcation
point in Fig. 3 is roughtly 45%.

Figure 4 is similar to Fig. 3 except that the ratio b/a varies between 0 and 1 with a/A,
held constant at a value of 200. Thus, this figure illustrates the effects of changing the in-
plane geometry of the specimen from that of a beam to a rectangular plate and finally to a
square plate. In order to illustrate the fact that such changes may cause a bifurcation point
in the nonlinear results, the film to substrate thickness ratio has been increased from 0.001
in Fig. 3 to 0.0019 in Fig. 4. The critical point for Fig. 4 occurs for a rectangular plate with
b/a ~ 0.5. Again, any increase in E¢/E,, h¢/h, or ¢ will cause this critical ratio to decrease.
In fact, there are many instances where the nonlinear solution will be beyond the bifurcation
point for all values of b/a.

Figure $ illustrates the effects of increasing the film to substrate thickness ratio while
holding all other parameters constant at the values specified in (18). These results are also
of practical significance since experimental results are commonly presented in the literature
as a function of film thickness. The predictions of the linear and nonlinear theories are
practically identical up to a thickness ratio h¢/h, ~ 7 x 10~ Following this, the two solu-
tions diverge rapidly with a roughly 45% discrepancy being observed at the bifurcation
point where h;/h, =~ 2 x 107>, These specific observations in terms of thickness ratios are
valid only for the case shown in Fig. 5 and will be significantly affected by any change in
the modulus ratio, intrinsic strain, or substrate dimensions. Also, it is misleading to compare
the magnitudes of the curvatures predicted after the critical point is reached since the two
theories predict fundamentally different shapes beyond this point (i.e. the linear theory
predicts an equal curvature shape while the nonlinear theory predicts two approximately
cylindrical shapes). From a practical point of view, it is extremely important to guarantee
that the bifurcation point has not been exceeded during a bending-plate experiment. The
reason for this is that during a typical experiment one would usually employ a beam-like
specimen and measure the curvature along the specimen’s length direction (i.c. k,). If the
critical point has been exceeded, however, there are two possible values for this curvature,
and it is impossible to know a priori which of these is being measured.

Figure 6 shows the effect of the intrinsic film strain upon the curvature of a film/sub-
strate laminate. In view of eqn (3), this figure may also be interpreted in terms of the fully
constrained (or intrinsic) film stress o}. For small values of the intrinsic strain (or stress),
the linear and nonlinear predictions are practically identical ; however, as the intrinsic strain
increases, the discrepancy between these predictions increases reaching around 45% at the
bifurcation point where e' = 0.0023 (¢ = —613 MPa).

Figure 7 illustrates the effects of the film/substrate modulus ratio E/E,. All other
parameters are as given in eqn (18) except that ¢' = +0.003. This figure has practical
significance since many early investigations calculated the intrinsic film stress from a simpli-
fied formula that neglected any difference between the film and substrate moduli. This
will obviously produce significant errors since for the typical case of a metallic film on a
glass substrate, the modulus ratio will usually be in the range from 3 to 5. In Fig. 7, this
range contains the bifurcation point (E;/ E, = 3.8).

This section will be concluded by making specific comparisons between the intrinsic
film stress predicted by the linear and nonlinear models from experimental data that have
appeared in the literature. Unfortunately, few comparisons of this type are possible since
most published results fail to report the in-plane dimensions of the specimens employed. In
what follows, experimentally determined curvatures are used to obtain the intrinsic film
strain by eqn (8b) and (13) for the linear and nonlinear cases, respectively. Equation (3) is
then employed to predict the intrinsic film stress in each case.

Before proceeding, it should be mentioned that in each case considered, the substrate
was clamped at one end and the curvature determined by a displacement measured at the
free end. As noted previously, the nonlinear model developed here is not strictly valid for
this cantilevered support condition ; however, in all cases except one the reported curvature
is always less than the critical value at the bifurcation point as predicted by eqn (17).
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Fig. 8. Predictions of the intrinsic film stress by the linear (~ - —) and nonlinear (— —) models based
upon the experimental data of Abermann and Martinz (1984).

Recall that the nonlinear theory always predicts an equal curvature shape (k* = k* = k*)
wherever the bifurcation point has not been reached and that the linear theory also predicts
this same general shape with, of course, a different value for k*. Thus, the linear theory
also fails to satisfy boundary conditions at a cantilevered support since one of the two
principal curvatures must be zero at this support. It would only be appropriate to employ
this theory to the cantilevered case if the curvature were calculated based upon the relative
displacement between two or more points that are located well away from the clamped
support. In practice, however, the curvature is usually calculated from a single deflection
measured at the free end of the specimen. In our opinion, the possibility that this measured
tip deflection might be affected by a clamped boundary has not been adequately addressed
in the literature. In any event, the purpose for making the following comparisons is not to
argue that either of the models developed here is strictly valid for the cantilevered beam
case, but rather to illustrate the errors that are possible whenever nonlinear effects are
ignored by using actual experimental data that have appeared in the literature.

Figure 8 gives comparisons between the intrinsic film stress predicted by the linear and
nonlinear models as a function of the film to substrate thickness ratio R. These results are
based upon the experimental data of Aberman and Martinz (1984) for a chromium film
deposited at a constant rate onto a glass, cantilevered substrate. The curves labeled a and
b in this figure correspond to the curves with the same labels in Fig. 2 of Aberman and
Martinz (1984). Curve a was obtained with the substrate at room temperature, while for
curve b the substrate was at 160°C. In both cases, the dashed line gives predictions based
upon the geometrically linear model [eqn (8b)], while the solid line gives the nonlinear
predictions [eqn (13)]. It turns out that the critical value for the nondimensional curvature
k* at the bifurcation point [as predicted by eqn (17)] is practically independent of the film
thickness for the relatively small film to substrate thickness ratios encountered in these tests.
This critical value is about 1.6 x 10™*%, whereas the maximum experimentally determined
values for k* are roughly 1 x 10~ * for both curves a and b. These maximum values occur
at the end of the test when the film thickness reaches its maximum value, which is also the
maximum value for R since A, is constant. Thus, the theoretical bifurcation point has not
been exceeded in either of these tests.

The discrepancy between the linear and nonlinear predictions in Fig. 8 (expressed as
a percentage of the linear result) is around 25% for both cases. Also, the ratio of the
maXximum displacement to substrate thickness is roughly 4 for both tests. It is interesting
to note that the linear model predicts an instrinsic film stress that is practically independent
of film thickness for case b, whereas the nonlinear model predicts a film stress that increases
with increasing film thickness. Also note that in both cases the nonlinear model predicts
higher values for the intrinsic film stress than does the linear model. This observation will
be discussed in greater detail later.

Figure 9 is similar to Fig. 8 except that the results are based on data from Horikoshi
and Tamura (1963) for an antimony film deposited onto a cantilevered copper substrate.
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Fig. 9. Predictions of the intrinsic film stress by the linear (- - -) and nonlinear (— —) models based
upon the experimental data of Horikoshi and Tamura (1963).

The labels in Fig. 9 are the specimen numbers as given in Fig. 6 of Horikoshi and Tamura
(1963). All data were obtained with the substrate at room temperature with constant film
deposition rates of 350, 1500 and 9500 A min~! for specimens Sb-8, Sb-32 and Sb-27,
respectively. Specimens Sb-27 and Sb-32 displayed relatively small compressive film stresses
initially ; however, the results shown in Fig. 9 begin where the film stress became tensile.

As with the previous case, the critical value for k* at the bifurcation point is practically
independent of R for the range of film thicknesses considered here. This value is about
8.8 x 10~ ® with a maximum error of roughly 3% for the range of R considered. Generally
speaking, the measured curvature in this type of test is always found to increase with
increasing film thickness so that the maximum k* values occur at the maximum values for
R in Fig. 9. For specimen Sb-8, this maximum k* value is about 4.9 x 10~¢, well below
the theoretical bifurcation point. For specimen Sb-27, the maximum &* value is around
8.3 x 10~¢, which is very close to the theoretical critical value of 8.8 x 10~ ¢, The maximum
values for k* for the results shown for specimen Sb-32 is exactly 8.8 x 10~ %, which is the
critical value according to eqn (17). The data reported by Horikoshi and Tamura (1963)
actually extended beyond this point (out to R =~ 0.004); however, calculations based on
this data are not shown in Fig. 9 since they exceed the theoretical bifurcation point. The
maximum discrepancies between the linear and nonlinear predictions (as a percentage of
the linear value) are roughly 15, 45 and 55% for specimens Sb-8, Sb-27 and Sb-32, respec-
tively, while the ratio of the maximum displacement to the substrate thickness is about 3.6,
6 and 6.3, respectively.

It is noted in Figs 8 and 9 that the value for the intrinsic stress predicted by the
nonlinear model is always larger than that predicted by the linear results. It may be readily
shown that this result is true in general provided that the film is relatively thin (where
relatively thin means that R? may be considered very small in comparison with unity) and
that the bifurcation point has not been exceeded. Assuming that the bifurcation point has
not been reached, we may substitute k¥ = k' = k* into eqns (13) and combine this result
with eqn (3) to yield the following expression for the intrinsic film stress as a function of
the nondimensional curvature :

E;

—or= 2R(1—v})(1+RBy/B,)

[A. (;1‘-'-) a +(b/a)‘)k*’+(Az+Aa)k*]- (23)

It can be shown that the term containing k* in eqn (23) is identical to the linear solution
that would be obtained by combining eqn (8b) with eqn (3). Thus the term containing k**
accounts for the nonlinear geometric effects upon the intrinsic film stress. It can also be
shown that the two coefficients multiplying k* and k** in eqn (23) will always have the
same sign provided that R? « 1. Thus the magnitude of the intrinsic stress predicted by the
nonlinear model will always exceed that of the linear model for this case. This means that
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a prediction based upon the linear results will not provide a conservative estimate of the
intrinsic film stress.

CONCLUSIONS

This paper presented a model capable of accounting for nonlinear geometric effects in
the bending-plate experiment that is commonly employed to estimate the intrinsic stress in
thin films. A linear model was also developed that is valid for any film thickness. Previous
linear models that have been applied to this experiment have all assumed that the film is
thin in comparison with the substrate,

Several results were presented based upon material properties and geometrical par-
ameters that are typical of many bending-plate experiments. It is clear from these results that
significant errors may result due to the neglect of nonlinear geometric effects. Comparisons
between the predictions of the linear and nonlinear models were also made based upon
actual experimental data. Of the cases considered, the maximum discrepancies between the
two models ranged from 15 to 55%. Based upon these observations, it seems possible
that nonlinear geometric effects may be (at least partially) responsible for some of the
discrepancies that have appeared in the literature where different investigators have reported
significantly different film stresses for the same material.

Probably the most practical conclusion to be drawn from this study is the need for
properly designing a bending-plate experiment. Since the nonlinear model presented here
is probably too cumbersome to employ in practice, it is important to be able to design an
experiment so that nonlinear effects will be negligible over the entire range of parameters
that are of interest. Precisely how this may be accomplished is the subject of a forthcoming
paper. Also to be shown in this paper is the relation between the present linear model and
those that have been employed in the past.
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APPENDIX
The non-dimensional constants A4 ,~4, that appear in eqns (5), (12) and (13) of the text are as follows:

A, = 51+ RQ)
2= Bz-RzBJ/Bl
A; = B,+R*B;/B,
Ay = —~2RQU +v)(1+ RBs/By)
As= RO(L+v)(1—v,+ RQ(1 —v))/ B,



where
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Ag = [RQ*(1—v}) = (1 =)+ Q(1 = R)(1-v¥)] B,
4;= Q(1+R)(v;i—v,)/ B,

R = hi/h,

Q = E(1-v])/ E(1=¥7)

B, = (1+RQ)*~ (v,+ RQv)?

B, = {(143R*+ RQ(3+ RY)

B, = (1+RQ)B,—2(v,+ RQv))B;

B, = (14 3R)v,+ RO(3+ Rv)

By = (v,+ RQv)B—2(1+ RQ)B,;
By=(1-0Q)+(v—Qv)’

B; = (1-0)(v—Qv)

By = (1—v,+ RQ(1 = v))(1 +v,— Q(L +¥y)).



